
A Huygen's principle for anisotropic media

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1971 J. Phys. A: Gen. Phys. 4 382

(http://iopscience.iop.org/0022-3689/4/3/016)

Download details:

IP Address: 171.66.16.73

The article was downloaded on 02/06/2010 at 04:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/4/3
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

A Huygen’s principle for anisotropic media 

N. R. OGG 
Royal Radar Establishment, Malvern, Worcs., England 
MS. received 30th September 1970 

Abstract. General results are developed for the Green’s function appropriate 
to radiation or diffraction in anisotropic media. The formulae may be evaluated 
from a knowledge of the geometry of the wavevector surfaces. The results 
allow the calculation of radiation fields in anisotropic media in both the Fresnel 
and Fraunhofer region. The case of optical radiation in a uniaxial medium is 
treated in detail. 

1. Introduction 
The theory of radiation or diffraction of electromagnetic or acoustic waves is now 

well established for media which are isotropic (Born and Wolf 1964). The  radiation 
field produced by a given source distribution may be readily expressed in terms of an 
integral over the source of the Green’s function, or radiation field produced by a 
unit point source, multiplied by the weighting function appropriate to the source. 
Diffraction by an aperture large compared with the wavelength of the radiation may 
be reduced to the problem of calculating the radiation from an effective source 
distribution across the aperture, this reduction being known as Huygen’s principle. 

For an extended source or aperture of halfwidth a radiating at wavelength X into 
an isotropic environment it is usual to divide the field into several regions depending 
on the distance Y of the observation point P from the source or aperture. We shall 
always assume that a B h since it is not possible to formulate Huygen’s principle 
when this is not satisfied (Sommerfeld 1954). It should be noted, however, that this 
condition need not hold for the theory of radiation from a source, although in most 
practical cases it is satisfied. If the distance Y from P to the nearest point on the 
source is such that Y < h then P is in the near field of the radiator. From Y > A, P is 
in the radiation zone. The radiation may be further analysed as follows. For 
a < Y < a2/X, P is said to be in the Fresnel region, for Y > a2/h,  P is in the far field 
or Fraunhofer region. The region h < Y < a does not seem to have any particular 
name. 

In  recent years the study of the propagation of both electromagnetic and acoustic 
waves in anisotropic crystals has become topical. This is currently most noticeable 
in the present widespread interest in nonlinear optics (Butcher 1965) and acoustic 
surface waves and their technological applications (White 1967). I n  order to under- 
stand the detailed behaviour of radiation from a source distribution or, equivalently, 
diffraction by an aperture, in an anisotropic environment, it is fundamental to derive 
the appropriate Green’s function or, what is in essence almost equivalent, the effective 
Huygen’s principle. 

I n  a basic paper on the theory of wave motion in an anisotropic environment 
Lighthill (1960) laid the foundations for the calculation of the radiation from a given 
source distribution in an anisotropic medium. This work was later used by 
Buchwald (1961) to obtain results for acoustic surface wave radiation on anisotropic 
surfaces. Unfortunately, these authors stopped short of deriving the Green’s function 
or Huygen’s principle for the radiation and obtained results valid only for the 
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Fraunhofer region of the radiation field. I n  many cases, particularly in the current 
study of acoustic surface wave propagation, most interest is in the Fresnel region of 
the radiation field. It is therefore highly desirable to have results which are sufficiently 
general to be applicable in this rdgime. Recently, Bergstein and Zachos (1966) 
derived the effective Huygen’s principle for electromagnetic radiation in a uniaxially 
anisotropic medium. This result is valid for r > A. I t  is the purpose of the present 
work to use the techniques developed by Lighthill (1960) in conjunction with standard 
Green’s function theory to derive a generalization of this result applicable to radiation 
and diffraction of electromagnetic or acoustic waves in materials with arbitrary 
anisotropy valid in the field region Y > A. Although this is a straightforward extension 
of Lighthill’s work it does not appear to have been done in the literature to the best of 
the author’s knowledge. 

I n  $ 5  2 and 3 we derive general expressions for the Green’s functions appropriate 
to radiation and diffraction in an anisotropic medium in terms of multiple Fourier 
integrals. In  $ 4 we simplify the expressions involved using the principle of stationary 
phase to find formulae valid in the field region r > A. In  5 5 the general results are 
applied to the case of uniaxial anisotropy considered by Bergstein and Zachos. 

2. Radiation from a source distribution 
In  this section we shall briefly consider the radiation from a source distribution 

S(r)  assumed to be oscillating sinusoidally in time with fixed frequency w in a 
system governed by the general vector wave equation 

D . A ( r )  = S ( r )  
( 0 3  

where D(aj2r) is a linear tensor differential operator and A(r)  is the vector field 
amplitude, together with the radiation boundary condition that A(r)  for Y -f 03 has 
the form of an outgoing travelling wave which falls off radially at least as l/r. In the 
case of elastic wave propagation A would represent particle displacement, while 
in the electromagnetic case A might be the electric field vector. 

To  solve (1) it is usual (Morse and Feshbach 1953) to consider the related equation, 
with the same boundary condition 

D . G(r-  r ’ )  = 16(r- r ’ )  (2) 
where G ( r  - r’), the tensor Green’s function, is a function of r - r’ because of the 
translational invariance of D, and I is the unit tensor. The  solution of (1) is then 
given by 

A ( r )  = JG(r-  r ’ )  . S ( r ’ )  dr ‘  (3) 

where the integral extends over the source region. If we introduce the Fourier 
transforms of the various quantities‘using the prescription 

m 

G(k) = 1 dk exp(- ik . ( r  - r ’ ) )  G(r - r ’ )  (4) 
- m  

we find from (2), on Fourier transforming and inverting, that 

1 S~ dkDadj(ik) 
G(r-r’)  = - exp(ik . ( r  - r ’ ) }  

( 2 ~ ) ~  - m  ID(ik)[ 
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where Dadf is the adjoint matrix to D and ID1 is the determinant of D. In  general 
I D(ik)l will have several zeros corresponding to the various branches of the dispersion 
relation ID(ik, w)I = 0. These zeros give rise to poles in the integrand of ( 5 ) .  The 
integral with respect to &in ( 5 )  may be performed using contour integration. Care 
must be taken in choosing the path of integration to satisfy the radiation condition, 
that is, to include only waves travelling out from the source point. Equation ( 5 )  
becomes 

where the summation is over the various branches of the dispersion relation 
k, = k,(k,, A,, w )  and the integration is taken over the wavevectors satisfying the 
radiation condition that k . r > 0. We defer further simplification of this until 4 4. 

In  certain degenerate cases Dadj(ik) will have a zero corresponding to a zero of 
lD(ik)l. This situation occurs for elastic wave propagation in an isotropic material 
where the transverse modes are degenerate. In  this case the sum over branches will 
go from 1 to 2 and the zero must be removed from Dadj and cancelled. 

3. Diffraction by a plane aperture 
The problem of the diffraction of an incident wave by a plane aperture may be 

reduced to the evaluation of an integral similar to (6) for a 9 A. We must solve 
equation (1) with zero on the right hand side subject to the boundary conditions that 
the solution takes the value Alnc(x, y )  (where Alnc(x, y )  is the disturbance produced 
by the incident wave on the aperture, which we take to lie in the plane x = 0) on the 
aperture, and is zero for the rest of the plane containing the aperture. Taking Fourier 
transforms ~ 7 e  immediately find that D(ik) . A(k) = 0, and it therefore follows that 

ID(ik, w ) ]  = 0 and A(k) = 2 WAj(k)  6 ( k , - k ~ ( k , ,  k,)} 
3 

where Aj(k) is the normalized eigenvector corresponding to the j th  branch of the 
dispersion relation k, = k,(k,, k,, w )  and W1 is a weighting factor. I t  follows 
immediately on inverting the Fourier transform that 

On the aperture plane x = 0, from (7)  we have 

1 .a% n 

On inverting the Fourier transform (8) and using the result to evaluate Wj, we find that 

A(r) = !dr’GAp(r-- r ’ ) .  Aino(rf) (9) 
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where 

x exp[i{k,(x - 2’)  + &(Y -Y ’1 + a k , ,  4/>.}] (10) 

and Bj is the unit vector orthogonal to A“ for m # j .  
Comparison with (3) shows that the problem of diffraction by an aperture may 

be formally regarded as equivalent to radiation from a source Ainc(x,y), with an 
aperture tensor Green’s function given by (10). Equation (9) is the generalization of 
Huygen’s Principle. However, to be of any use the Green’s functions given by (10) 
and (6) must be simplified. We do this in the next section. 

4. Simplification of the Green’s function 
I n  most cases of interest we require a knowledge of the field in the radiation zone 

lr-r’l 9 A. In  this region it is possible to simplify (6) and (10) considerably using 
the principle of stationary phase (Born and Wolf 1964). According to this, for 
Ir-r’l $ A, the dominant contributions to the integrals in (6) and (10) come from 
the vicinity of points on each branch where the phase 

i k J ,  ( r - r ‘ )  = ilr-r’/yP(itz, it,, r - r ’ )  

is stationary with respect to variations in k on the wavevector surfaces given by 
jD(ik, w ) [  = 0, that is, at points where 8qY/8k, = 2g/ak ,  = 0. In  the region of such 
a point ks the phase may be expanded as follows (for convenience we omit the 
dependence on r - r’ since this is held fixed) : 

ry(k,, A,) = l#’(kS,, k ~ ) + g { a , ( K , - K , S ) 2 t _ p j ( i t y - k ~ ) ~ + 2 y j ( K r - k ~ ) ( K , - R ~ ) } +  ... 
(11) 

where a y  .;2@ 

cl.’ = (e), p j  = (-Is 7’ = 

Using the result that 

where 
U, = 1 for x,f l j  > y j 2 ,  aj > 0 

- 1 for a j p j  > y12, x j  < 0 
- i  for x,p, < yj2 

and K j  = dcjpj-yj2 is the Gaussian curvature of the surface &’ = 4 j ( K , ,  ky), in (6)  
and (10) we find that 
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and 

where the index j runs over the Yarious branches of the dispersion relation and the 
index s = s ( j )  labels the points of stationary phase on the j th  branch. Equations 
(13) and (14), together with (3 )  and (9), provide the required generalizations of the 
radiation field from a source and Huygen’s principle in anisotropic media for 
Ir-r’l A;, where X; is the wavelength corresponding to the smallest k; in the 
sums (13) and (14). We note here that further approximations in the evaluation of the 
integrals (3) and (9) lead to the classification of the radiation field into Fresnel and 
Fraunhofer regions. 

Equations (13) and (14) may be more conveniently expressed in terms of the 
geometrical properties of the wavevector surfaces 1 D(ik)I = 0 or equivalently 
k,  = &(k,, k , ) .  Since 

k, (x  - x’) -k k,(y  -y’)  + k:(k,, k , ) ( x  - z’) 
lr -r‘ l  9 V X ,  k g )  = 

it immediately follows that, at a stationary phase point, 

x-x ’  - -- 2ki _ -  
ak, z-z’ 

Y -Y’ 
akY z-z‘ 

- -- ak: _ -  

that is, the normal to the wavevector surface is parallel to r -  r’, hence the Gaussian 
curvature of the wavevector surface k, = ki(k,, k,) is given by (Salmon 1912) 

Similarly at a stationary phase point 

Hence we find, using (15) and (16) in (13) and (14), 

s s s  i n .  ( r -  r ’ )  AjBjajexp(ik;. ( r -  r ’ ) )  
GAQ(r- r ’ )  = 271r- r’I2 2 j,s ( A ;  . B;))~;/1~2 

%There n is the unit normal to the aperture plane. 
G and GAP may be readily calculated from a knowledge of the operator D(ik) 

and in conjunction with equations (3) and (9) allow a calculation of the radiation field 
for all lr-r’l 9 X to be reduced to an integration over the source region. In  many 
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cases this may be performed numerically. If the Gaussian curvature of the wavevector 
surface vanishes then we must retain higher order terms in the phase expansion (1 1). 
In  general the effect of zero curvature is to make the Green's functions (17) and (18) 
fall off less rapidly with Ir- r' 1 .  The details of the radial dependence, however, depend 
on the shape of the surface in the neighbourhood of the stationary phase point. We do 
not consider this problem here since to do so in three dimensions with generality is 
extremely complex. 

Results similar to equations (17) and (18) may easily be obtained intwo dimensions. 
The  particular case of acoustic surface waves is slightly more complicated owing to 
the need for additional boundary conditions to be satisfied. This case will be dealt 
with separately elsewhere. 

5. Diffraction in a uniaxial material 
In  this section we apply the general results (17) and (18) to the particular case of 

optical diffraction in a uniaxial material. This case has already been studied by 
Bergstein and Zachos (1966), and we merely use this example as an illustration of the 
use of the general formulae. 

I n  the forms (17) and (18) the tensor Green's functions do not depend on the 
choice of coordinate system. We therefore choose our coordinate system initially to  
coincide with the principal axes of the medium, with the x axis along the optic axis. 
We shall later rotate the results to transfer to a coordinate system where the diffracting 
aperture lies on x = 0. 

After Fourier transformation Maxwell's equations yield 

(19) 
U 2  

V2 
k ( k .  b ) - k 2 6 +  -E,. d = 0 

where 6 is the electric field vector and 

where E, is the relative dielectric constant for propagation normal to the optic axis 
and V is the propagation velocity of the ordinary wave. Equation (19) immediately 
yields the dispersion relation 

The eigenvectors corresponding to the two branches of the dispersion relation (20) 
are found t o  be, after some algebra, 

Ordinary 

O =  

Extraordinary 

E =  
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where P, = ( K Z 2  +Ky2)1‘2 and Pz = (k,2 + A y 2  + ~ ~ k 2 , ) ~ ’ ~ .  It is clear that 0 .  E = 0 
and 0 .  k = 0. In  order to apply (18) we must first find the stationary phase points 
where aqY/?k, = 8f /8kJZy = 0. Using (19) to evaluate the phase we find that 

w r - r f  
kS0 -___ 

V Ir-r‘i 
and 

s e  w 2-2’ k, =-- 
l r - r ’ l e  

0.J 1 / 2  (x- s’, Y -Y’) 
k:E,,, = - e r  

V lr-r‘je 
where o and e signify ordinary and extraordinary, and 

is an effective distance between source and observation point. From (15) the square 
roots of the curvatures of the wavevector surfaces at the points kS are easily found 
to be ~ K , O [ ~ ; ~  = V / w  and j ~ ~ ~ ] ~ / ~  = ( ~ / ~ ) ~ r - r ’ [ ~ ~ ~ r - r ’ ~ z .  The eigenvectors Ai 
may be identified with 0 and E and a complete set for expansion may be made up by 
taking the unit vector perpendicular to 0 and E .  In  this case the orthogonal vector 
set Bj will be identical with Ai. 

Vsing these results in (18) we find for the aperture tensor Green’s function 

k,n . ( r -  r f ) O ( k S o )  O(kSo) exp(ik,Ir- r’ l )  
G*P(r--r’)  = 

2nil r -  r ’ /  Ir- r’i 
k,n , ( r  - r ’ )  E(kse )  E ( k S e )  exp( ikel r - r ’ / J  + 2nilr- r’je jr- r f  l e  (22) 

“here ko = w;V, K ,  = ( w / V ) E : / ~ ,  and O(ks0), E(kse)  may be easily evaluated using 
the results above. The  radiation Green’s function may easily be found in a similar 
fashion but we do not quote the result here since it is similar to (22). Taking 

where 5 is the unit vector along the optic axis we see that the form (22) is true for any 
coordinate system provided the polarization vectors E and 0 are appropriately rotated. 
The second term in (22) for the extraordinary wave is identical with Bergstein and 
Zachos’ result except for the inclusion of polarization factors. 

Similar calculations may be done for other symmetries. These will be presented 
elsewhere. 
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